Global Hop Domination Numbers of Graphs
نویسندگان
چکیده
منابع مشابه
Total $k$-Rainbow domination numbers in graphs
Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...
متن کاملThe minus k-domination numbers in graphs
For any integer , a minus k-dominating function is afunction f : V (G) {-1,0, 1} satisfying w) for every vertex v, where N(v) ={u V(G) | uv E(G)} and N[v] =N(v)cup {v}. The minimum of the values of v), taken over all minusk-dominating functions f, is called the minus k-dominationnumber and is denoted by $gamma_k^-(G)$ . In this paper, we introduce the study of minu...
متن کاملHop Domination in Graphs-II
Let G = (V,E) be a graph. A set S ⊂ V (G) is a hop dominating set of G if for every v ∈ V − S, there exists u ∈ S such that d(u, v) = 2. The minimum cardinality of a hop dominating set of G is called a hop domination number of G and is denoted by γh(G). In this paper we characterize the family of trees and unicyclic graphs for which γh(G) = γt(G) and γh(G) = γc(G) where γt(G) and γc(G) are the ...
متن کاملDouble Roman domination and domatic numbers of graphs
A double Roman dominating function on a graph $G$ with vertex set $V(G)$ is defined in cite{bhh} as a function$f:V(G)rightarrow{0,1,2,3}$ having the property that if $f(v)=0$, then the vertex $v$ must have at least twoneighbors assigned 2 under $f$ or one neighbor $w$ with $f(w)=3$, and if $f(v)=1$, then the vertex $v$ must haveat least one neighbor $u$ with $f(u)ge 2$. The weight of a double R...
متن کاملglobal minus domination in graphs
a function $f:v(g)rightarrow {-1,0,1}$ is a {em minusdominating function} if for every vertex $vin v(g)$, $sum_{uinn[v]}f(u)ge 1$. a minus dominating function $f$ of $g$ is calleda {em global minus dominating function} if $f$ is also a minusdominating function of the complement $overline{g}$ of $g$. the{em global minus domination number} $gamma_{g}^-(g)$ of $g$ isdefined as $gamma_{g}^-(g)=min{...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Pure and Applied Mathematics
سال: 2021
ISSN: 1307-5543
DOI: 10.29020/nybg.ejpam.v14i1.3916